
GNU Parallel Tutorial

Page 1

GNU Parallel Tutorial
This tutorial shows off much of GNU parallel's functionality. The
tutorial is meant to learn the options
in and syntax of GNU parallel. The tutorial is not to show realistic examples from the
real world.

Reader's guide
If you prefer reading a book buy GNU Parallel 2018 at

https://www.lulu.com/shop/ole-tange/gnu-parallel-2018/paperback/product-23558902.html
or
download it at: https://doi.org/10.5281/zenodo.1146014

Otherwise start by watching the intro videos for a quick introduction:

https://www.youtube.com/playlist?list=PL284C9FF2488BC6D1

Then browse through the EXAMPLEs after the list of OPTIONS in man parallel (Use
LESS=+/EXAMPLE: man parallel). That will give
you an idea of what GNU parallel is capable of.

If you want to dive even deeper: spend a couple of hours walking
through the tutorial (man
parallel_tutorial). Your command line
will love you for it.

Finally you may want to look at the rest of the manual (man
parallel) if you have special needs not
already covered.

If you want to know the design decisions behind GNU parallel, try: man parallel_design. This is also
a good intro if you intend to
change GNU parallel.

Prerequisites
To run this tutorial you must have the following:

parallel >= version 20160822

Install the newest version using your package manager (recommended for
security
reasons), the way described in README, or with this command:

 $ (wget -O - pi.dk/3 || lynx -source pi.dk/3 || curl
pi.dk/3/ || \
 fetch -o - http://pi.dk/3) > install.sh
 $ sha1sum install.sh
 12345678 3374ec53 bacb199b 245af2dd a86df6c9
 $ md5sum install.sh
 029a9ac0 6e8b5bc6 052eac57 b2c3c9ca
 $ sha512sum install.sh
 40f53af6 9e20dae5 713ba06c f517006d 9897747b ed8a4694
b1acba1b 1464beb4
 60055629 3f2356f3 3e9c4e3c 76e3f3af a9db4b32 bd33322b
975696fc e6b23cfb
 $ bash install.sh

This will also install the newest version of the tutorial which you
can see by running
this:

 man parallel_tutorial

Most of the tutorial will work on older versions, too.

abc-file:

The file can be generated by this command:

 parallel -k echo ::: A B C > abc-file

def-file:

The file can be generated by this command:

GNU Parallel Tutorial

Page 2

 parallel -k echo ::: D E F > def-file

abc0-file:

The file can be generated by this command:

 perl -e 'printf "A\0B\0C\0"' > abc0-file

abc_-file:

The file can be generated by this command:

 perl -e 'printf "A_B_C_"' > abc_-file

tsv-file.tsv

The file can be generated by this command:

 perl -e 'printf "f1\tf2\nA\tB\nC\tD\n"' > tsv-file.tsv

num8

The file can be generated by this command:

 perl -e 'for(1..8){print "$_\n"}' > num8

num128

The file can be generated by this command:

 perl -e 'for(1..128){print "$_\n"}' > num128

num30000

The file can be generated by this command:

 perl -e 'for(1..30000){print "$_\n"}' > num30000

num1000000

The file can be generated by this command:

 perl -e 'for(1..1000000){print "$_\n"}' > num1000000

num_%header

The file can be generated by this command:

 (echo %head1; echo %head2; \
 perl -e 'for(1..10){print "$_\n"}') > num_%header

fixedlen

The file can be generated by this command:

 perl -e 'print "HHHHAAABBBCCC"' > fixedlen

For remote running: ssh login on 2 servers with no password in
$SERVER1 and $SERVER2 must
work.

 SERVER1=server.example.com
 SERVER2=server2.example.net

So you must be able to do this without entering a password:

 ssh $SERVER1 echo works
 ssh $SERVER2 echo works

GNU Parallel Tutorial

Page 3

It can be setup by running 'ssh-keygen -t dsa; ssh-copy-id $SERVER1'
and using an
empty passphrase, or you can use ssh-agent.

Input sources
GNU parallel reads input from input sources. These can be files, the
command line, and stdin
(standard input or a pipe).

A single input source
Input can be read from the command line:

 parallel echo ::: A B C

Output (the order may be different because the jobs are run in
parallel):

 A
 B
 C

The input source can be a file:

 parallel -a abc-file echo

Output: Same as above.

STDIN (standard input) can be the input source:

 cat abc-file | parallel echo

Output: Same as above.

Multiple input sources
GNU parallel can take multiple input sources given on the command
line. GNU parallel then
generates all combinations of the input
sources:

 parallel echo ::: A B C ::: D E F

Output (the order may be different):

 A D
 A E
 A F
 B D
 B E
 B F
 C D
 C E
 C F

The input sources can be files:

 parallel -a abc-file -a def-file echo

Output: Same as above.

STDIN (standard input) can be one of the input sources using -:

 cat abc-file | parallel -a - -a def-file echo

GNU Parallel Tutorial

Page 4

Output: Same as above.

Instead of -a files can be given after :::::

 cat abc-file | parallel echo :::: - def-file

Output: Same as above.

::: and :::: can be mixed:

 parallel echo ::: A B C :::: def-file

Output: Same as above.

Linking arguments from input sources

With --link you can link the input sources and get one argument
from each input source:

 parallel --link echo ::: A B C ::: D E F

Output (the order may be different):

 A D
 B E
 C F

If one of the input sources is too short, its values will wrap:

 parallel --link echo ::: A B C D E ::: F G

Output (the order may be different):

 A F
 B G
 C F
 D G
 E F

For more flexible linking you can use :::+ and ::::+. They work
like ::: and :::: except they link the
previous input source to
this input source.

This will link ABC to GHI:

 parallel echo :::: abc-file :::+ G H I :::: def-file

Output (the order may be different):

 A G D
 A G E
 A G F
 B H D
 B H E
 B H F
 C I D
 C I E
 C I F

This will link GHI to DEF:

GNU Parallel Tutorial

Page 5

 parallel echo :::: abc-file ::: G H I ::::+ def-file

Output (the order may be different):

 A G D
 A H E
 A I F
 B G D
 B H E
 B I F
 C G D
 C H E
 C I F

If one of the input sources is too short when using :::+ or ::::+, the rest will be ignored:

 parallel echo ::: A B C D E :::+ F G

Output (the order may be different):

 A F
 B G

Changing the argument separator.
GNU parallel can use other separators than ::: or ::::. This is
typically useful if ::: or :::: is used in the
command to run:

 parallel --arg-sep ,, echo ,, A B C :::: def-file

Output (the order may be different):

 A D
 A E
 A F
 B D
 B E
 B F
 C D
 C E
 C F

Changing the argument file separator:

 parallel --arg-file-sep // echo ::: A B C // def-file

Output: Same as above.

Changing the argument delimiter
GNU parallel will normally treat a full line as a single argument: It
uses \n as argument delimiter. This
can be changed with -d:

 parallel -d _ echo :::: abc_-file

Output (the order may be different):

 A
 B

GNU Parallel Tutorial

Page 6

 C

NUL can be given as \0:

 parallel -d '\0' echo :::: abc0-file

Output: Same as above.

A shorthand for -d '\0' is -0 (this will often be used to read files
from find ... -print0):

 parallel -0 echo :::: abc0-file

Output: Same as above.

End-of-file value for input source
GNU parallel can stop reading when it encounters a certain value:

 parallel -E stop echo ::: A B stop C D

Output:

 A
 B

Skipping empty lines
Using --no-run-if-empty GNU parallel will skip empty lines.

 (echo 1; echo; echo 2) | parallel --no-run-if-empty echo

Output:

 1
 2

Building the command line
No command means arguments are commands

If no command is given after parallel the arguments themselves are
treated as commands:

 parallel ::: ls 'echo foo' pwd

Output (the order may be different):

 [list of files in current dir]
 foo
 [/path/to/current/working/dir]

The command can be a script, a binary or a Bash function if the function is
exported using export -f:

 # Only works in Bash
 my_func() {
 echo in my_func $1
 }
 export -f my_func
 parallel my_func ::: 1 2 3

Output (the order may be different):

GNU Parallel Tutorial

Page 7

 in my_func 1
 in my_func 2
 in my_func 3

Replacement strings
The 7 predefined replacement strings

GNU parallel has several replacement strings. If no replacement
strings are used the default is to
append {}:

 parallel echo ::: A/B.C

Output:

 A/B.C

The default replacement string is {}:

 parallel echo {} ::: A/B.C

Output:

 A/B.C

The replacement string {.} removes the extension:

 parallel echo {.} ::: A/B.C

Output:

 A/B

The replacement string {/} removes the path:

 parallel echo {/} ::: A/B.C

Output:

 B.C

The replacement string {//} keeps only the path:

 parallel echo {//} ::: A/B.C

Output:

 A

The replacement string {/.} removes the path and the extension:

 parallel echo {/.} ::: A/B.C

Output:

 B

The replacement string {#} gives the job number:

GNU Parallel Tutorial

Page 8

 parallel echo {#} ::: A B C

Output (the order may be different):

 1
 2
 3

The replacement string {%} gives the job slot number (between 1 and
number of jobs to run in
parallel):

 parallel -j 2 echo {%} ::: A B C

Output (the order may be different and 1 and 2 may be swapped):

 1
 2
 1

Changing the replacement strings

The replacement string {} can be changed with -I:

 parallel -I ,, echo ,, ::: A/B.C

Output:

 A/B.C

The replacement string {.} can be changed with --extensionreplace:

 parallel --extensionreplace ,, echo ,, ::: A/B.C

Output:

 A/B

The replacement string {/} can be replaced with --basenamereplace:

 parallel --basenamereplace ,, echo ,, ::: A/B.C

Output:

 B.C

The replacement string {//} can be changed with --dirnamereplace:

 parallel --dirnamereplace ,, echo ,, ::: A/B.C

Output:

 A

The replacement string {/.} can be changed with --basenameextensionreplace:

 parallel --basenameextensionreplace ,, echo ,, ::: A/B.C

GNU Parallel Tutorial

Page 9

Output:

 B

The replacement string {#} can be changed with --seqreplace:

 parallel --seqreplace ,, echo ,, ::: A B C

Output (the order may be different):

 1
 2
 3

The replacement string {%} can be changed with --slotreplace:

 parallel -j2 --slotreplace ,, echo ,, ::: A B C

Output (the order may be different and 1 and 2 may be swapped):

 1
 2
 1

Perl expression replacement string

When predefined replacement strings are not flexible enough a perl
expression can be used instead.
One example is to remove two
extensions: foo.tar.gz becomes foo

 parallel echo '{= s:\.[^.]+$::;s:\.[^.]+$::; =}' ::: foo.tar.gz

Output:

 foo

In {= =} you can access all of GNU parallel's internal functions
and variables. A few are worth
mentioning.

total_jobs() returns the total number of jobs:

 parallel echo Job {#} of {= '$_=total_jobs()' =} ::: {1..5}

Output:

 Job 1 of 5
 Job 2 of 5
 Job 3 of 5
 Job 4 of 5
 Job 5 of 5

Q(...) shell quotes the string:

 parallel echo {} shell quoted is {= '$_=Q($_)' =} ::: '*/!#$'

Output:

 */!#$ shell quoted is */\!\#\$

GNU Parallel Tutorial

Page 10

skip() skips the job:

 parallel echo {= 'if($_==3) { skip() }' =} ::: {1..5}

Output:

 1
 2
 4
 5

@arg contains the input source variables:

 parallel echo {= 'if($arg[1]==$arg[2]) { skip() }' =} \
 ::: {1..3} ::: {1..3}

Output:

 1 2
 1 3
 2 1
 2 3
 3 1
 3 2

If the strings {= and =} cause problems they can be replaced with --parens:

 parallel --parens ,,,, echo ',, s:\.[^.]+$::;s:\.[^.]+$::; ,,' \
 ::: foo.tar.gz

Output:

 foo

To define a shorthand replacement string use --rpl:

 parallel --rpl '.. s:\.[^.]+$::;s:\.[^.]+$::;' echo '..' \
 ::: foo.tar.gz

Output: Same as above.

If the shorthand starts with { it can be used as a positional
replacement string, too:

 parallel --rpl '{..} s:\.[^.]+$::;s:\.[^.]+$::;' echo '{..}'
 ::: foo.tar.gz

Output: Same as above.

If the shorthand contains matching parenthesis the replacement string
becomes a dynamic
replacement string and the string in the parenthesis
can be accessed as $$1. If there are multiple
matching parenthesis,
the matched strings can be accessed using $$2, $$3 and so on.

You can think of this as giving arguments to the replacement
string. Here we give the argument
.tar.gz to the replacement string {%string} which removes string:

 parallel --rpl '{%(.+?)} s/$$1$//;' echo {%.tar.gz}.zip ::: foo.tar.gz

Output:

GNU Parallel Tutorial

Page 11

 foo.zip

Here we give the two arguments tar.gz and zip to the replacement
string {/string1/string2} which
replaces string1 with string2:

 parallel --rpl '{/(.+?)/(.*?)} s/$$1/$$2/;' echo {/tar.gz/zip} \
 ::: foo.tar.gz

Output:

 foo.zip

GNU parallel's 7 replacement strings are implemented as this:

 --rpl '{} '
 --rpl '{#} $_=$job->seq()'
 --rpl '{%} $_=$job->slot()'
 --rpl '{/} s:.*/::'
 --rpl '{//} $Global::use{"File::Basename"} ||=
 eval "use File::Basename; 1;"; $_ = dirname($_);'
 --rpl '{/.} s:.*/::; s:\.[^/.]+$::;'
 --rpl '{.} s:\.[^/.]+$::'

Positional replacement strings

With multiple input sources the argument from the individual input
sources can be accessed with {
number}:

 parallel echo {1} and {2} ::: A B ::: C D

Output (the order may be different):

 A and C
 A and D
 B and C
 B and D

The positional replacement strings can also be modified using /, //, /., and .:

 parallel echo /={1/} //={1//} /.={1/.} .={1.} ::: A/B.C D/E.F

Output (the order may be different):

 /=B.C //=A /.=B .=A/B
 /=E.F //=D /.=E .=D/E

If a position is negative, it will refer to the input source counted
from behind:

 parallel echo 1={1} 2={2} 3={3} -1={-1} -2={-2} -3={-3} \
 ::: A B ::: C D ::: E F

Output (the order may be different):

 1=A 2=C 3=E -1=E -2=C -3=A
 1=A 2=C 3=F -1=F -2=C -3=A
 1=A 2=D 3=E -1=E -2=D -3=A
 1=A 2=D 3=F -1=F -2=D -3=A
 1=B 2=C 3=E -1=E -2=C -3=B

GNU Parallel Tutorial

Page 12

 1=B 2=C 3=F -1=F -2=C -3=B
 1=B 2=D 3=E -1=E -2=D -3=B
 1=B 2=D 3=F -1=F -2=D -3=B

Positional perl expression replacement string

To use a perl expression as a positional replacement string simply
prepend the perl expression with
number and space:

 parallel echo '{=2 s:\.[^.]+$::;s:\.[^.]+$::; =} {1}' \
 ::: bar ::: foo.tar.gz

Output:

 foo bar

If a shorthand defined using --rpl starts with { it can be used as
a positional replacement string, too:

 parallel --rpl '{..} s:\.[^.]+$::;s:\.[^.]+$::;' echo '{2..} {1}' \
 ::: bar ::: foo.tar.gz

Output: Same as above.

Input from columns

The columns in a file can be bound to positional replacement strings
using --colsep. Here the
columns are separated by TAB (\t):

 parallel --colsep '\t' echo 1={1} 2={2} :::: tsv-file.tsv

Output (the order may be different):

 1=f1 2=f2
 1=A 2=B
 1=C 2=D

Header defined replacement strings

With --header GNU parallel will use the first value of the input
source as the name of the
replacement string. Only the non-modified
version {} is supported:

 parallel --header : echo f1={f1} f2={f2} ::: f1 A B ::: f2 C D

Output (the order may be different):

 f1=A f2=C
 f1=A f2=D
 f1=B f2=C
 f1=B f2=D

It is useful with --colsep for processing files with TAB separated values:

 parallel --header : --colsep '\t' echo f1={f1} f2={f2} \
 :::: tsv-file.tsv

Output (the order may be different):

 f1=A f2=B
 f1=C f2=D

GNU Parallel Tutorial

Page 13

More pre-defined replacement strings with --plus

--plus adds the replacement strings {+/} {+.} {+..} {+...} {..} {...}
{/..} {/...} {##}. The idea being that
{+foo} matches the opposite of {foo}
and {} = {+/}/{/} = {.}.{+.} = {+/}/{/.}.{+.} = {..}.{+..} = {+/}/{/..}.
{+..} = {...}.{+...} = {+/}/{/...}.{+...}.

 parallel --plus echo {} ::: dir/sub/file.ex1.ex2.ex3
 parallel --plus echo {+/}/{/} ::: dir/sub/file.ex1.ex2.ex3
 parallel --plus echo {.}.{+.} ::: dir/sub/file.ex1.ex2.ex3
 parallel --plus echo {+/}/{/.}.{+.} ::: dir/sub/file.ex1.ex2.ex3
 parallel --plus echo {..}.{+..} ::: dir/sub/file.ex1.ex2.ex3
 parallel --plus echo {+/}/{/..}.{+..} ::: dir/sub/file.ex1.ex2.ex3
 parallel --plus echo {...}.{+...} ::: dir/sub/file.ex1.ex2.ex3
 parallel --plus echo {+/}/{/...}.{+...} ::: dir/sub/file.ex1.ex2.ex3

Output:

 dir/sub/file.ex1.ex2.ex3

{##} is simply the number of jobs:

 parallel --plus echo Job {#} of {##} ::: {1..5}

Output:

 Job 1 of 5
 Job 2 of 5
 Job 3 of 5
 Job 4 of 5
 Job 5 of 5

Dynamic replacement strings with --plus

--plus also defines these dynamic replacement strings:

{:-string}

Default value is string if the argument is empty.

{:number}

Substring from number till end of string.

{:number1:number2}

Substring from number1 to number2.

{#string}

If the argument starts with string, remove it.

{%string}

If the argument ends with string, remove it.

{/string1/string2}

Replace string1 with string2.

{^string}

If the argument starts with string, upper case it. string must
be a
single letter.

{^^string}

GNU Parallel Tutorial

Page 14

If the argument contains string, upper case it. string must be a

single letter.

{,string}

If the argument starts with string, lower case it. string must
be a
single letter.

{,,string}

If the argument contains string, lower case it. string must be a

single letter.

They are inspired from Bash:

 unset myvar
 echo ${myvar:-myval}
 parallel --plus echo {:-myval} ::: "$myvar"

 myvar=abcAaAdef
 echo ${myvar:2}
 parallel --plus echo {:2} ::: "$myvar"

 echo ${myvar:2:3}
 parallel --plus echo {:2:3} ::: "$myvar"

 echo ${myvar#bc}
 parallel --plus echo {#bc} ::: "$myvar"
 echo ${myvar#abc}
 parallel --plus echo {#abc} ::: "$myvar"

 echo ${myvar%de}
 parallel --plus echo {%de} ::: "$myvar"
 echo ${myvar%def}
 parallel --plus echo {%def} ::: "$myvar"

 echo ${myvar/def/ghi}
 parallel --plus echo {/def/ghi} ::: "$myvar"

 echo ${myvar^a}
 parallel --plus echo {^a} ::: "$myvar"
 echo ${myvar^^a}
 parallel --plus echo {^^a} ::: "$myvar"

 myvar=AbcAaAdef
 echo ${myvar,A}
 parallel --plus echo '{,A}' ::: "$myvar"
 echo ${myvar,,A}
 parallel --plus echo '{,,A}' ::: "$myvar"

Output:

 myval
 myval
 cAaAdef
 cAaAdef
 cAa

GNU Parallel Tutorial

Page 15

 cAa
 abcAaAdef
 abcAaAdef
 AaAdef
 AaAdef
 abcAaAdef
 abcAaAdef
 abcAaA
 abcAaA
 abcAaAghi
 abcAaAghi
 AbcAaAdef
 AbcAaAdef
 AbcAAAdef
 AbcAAAdef
 abcAaAdef
 abcAaAdef
 abcaaadef
 abcaaadef

More than one argument
With --xargs GNU parallel will fit as many arguments as possible on a
single line:

 cat num30000 | parallel --xargs echo | wc -l

Output (if you run this under Bash on GNU/Linux):

 2

The 30000 arguments fitted on 2 lines.

The maximal length of a single line can be set with -s. With a maximal
line length of 10000 chars 17
commands will be run:

 cat num30000 | parallel --xargs -s 10000 echo | wc -l

Output:

 17

For better parallelism GNU parallel can distribute the arguments
between all the parallel jobs when
end of file is met.

Below GNU parallel reads the last argument when generating the second
job. When GNU parallel
reads the last argument, it spreads all the
arguments for the second job over 4 jobs instead, as 4
parallel jobs
are requested.

The first job will be the same as the --xargs example above, but the
second job will be split into 4
evenly sized jobs, resulting in a
total of 5 jobs:

 cat num30000 | parallel --jobs 4 -m echo | wc -l

Output (if you run this under Bash on GNU/Linux):

 5

This is even more visible when running 4 jobs with 10 arguments. The
10 arguments are being spread

GNU Parallel Tutorial

Page 16

over 4 jobs:

 parallel --jobs 4 -m echo ::: 1 2 3 4 5 6 7 8 9 10

Output:

 1 2 3
 4 5 6
 7 8 9
 10

A replacement string can be part of a word. -m will not repeat the context:

 parallel --jobs 4 -m echo pre-{}-post ::: A B C D E F G

Output (the order may be different):

 pre-A B-post
 pre-C D-post
 pre-E F-post
 pre-G-post

To repeat the context use -X which otherwise works like -m:

 parallel --jobs 4 -X echo pre-{}-post ::: A B C D E F G

Output (the order may be different):

 pre-A-post pre-B-post
 pre-C-post pre-D-post
 pre-E-post pre-F-post
 pre-G-post

To limit the number of arguments use -N:

 parallel -N3 echo ::: A B C D E F G H

Output (the order may be different):

 A B C
 D E F
 G H

-N also sets the positional replacement strings:

 parallel -N3 echo 1={1} 2={2} 3={3} ::: A B C D E F G H

Output (the order may be different):

 1=A 2=B 3=C
 1=D 2=E 3=F
 1=G 2=H 3=

-N0 reads 1 argument but inserts none:

 parallel -N0 echo foo ::: 1 2 3

GNU Parallel Tutorial

Page 17

Output:

 foo
 foo
 foo

Quoting
Command lines that contain special characters may need to be protected from the shell.

The perl program print "@ARGV\n" basically works like echo.

 perl -e 'print "@ARGV\n"' A

Output:

 A

To run that in parallel the command needs to be quoted:

 parallel perl -e 'print "@ARGV\n"' ::: This wont work

Output:

 [Nothing]

To quote the command use -q:

 parallel -q perl -e 'print "@ARGV\n"' ::: This works

Output (the order may be different):

 This
 works

Or you can quote the critical part using \':

 parallel perl -e \''print "@ARGV\n"'\' ::: This works, too

Output (the order may be different):

 This
 works,
 too

GNU parallel can also \-quote full lines. Simply run this:

 parallel --shellquote
 Warning: Input is read from the terminal. You either know what you
 Warning: are doing (in which case: YOU ARE AWESOME!) or you forgot
 Warning: ::: or :::: or to pipe data into parallel. If so
 Warning: consider going through the tutorial: man parallel_tutorial
 Warning: Press CTRL-D to exit.
 perl -e 'print "@ARGV\n"'
 [CTRL-D]

Output:

GNU Parallel Tutorial

Page 18

 perl\ -e\ \'print\ \"@ARGV\\n\"\'

This can then be used as the command:

 parallel perl\ -e\ \'print\ \"@ARGV\\n\"\' ::: This also works

Output (the order may be different):

 This
 also
 works

Trimming space
Space can be trimmed on the arguments using --trim:

 parallel --trim r echo pre-{}-post ::: ' A '

Output:

 pre- A-post

To trim on the left side:

 parallel --trim l echo pre-{}-post ::: ' A '

Output:

 pre-A -post

To trim on the both sides:

 parallel --trim lr echo pre-{}-post ::: ' A '

Output:

 pre-A-post

Respecting the shell
This tutorial uses Bash as the shell. GNU parallel respects which
shell you are using, so in zsh you
can do:

 parallel echo \={} ::: zsh bash ls

Output:

 /usr/bin/zsh
 /bin/bash
 /bin/ls

In csh you can do:

 parallel 'set a="{}"; if({ test -d "$a" }) echo "$a is a dir"' ::: *

Output:

 [somedir] is a dir

GNU Parallel Tutorial

Page 19

This also becomes useful if you use GNU parallel in a shell script:
GNU parallel will use the same
shell as the shell script.

Controlling the output
The output can prefixed with the argument:

 parallel --tag echo foo-{} ::: A B C

Output (the order may be different):

 A foo-A
 B foo-B
 C foo-C

To prefix it with another string use --tagstring:

 parallel --tagstring {}-bar echo foo-{} ::: A B C

Output (the order may be different):

 A-bar foo-A
 B-bar foo-B
 C-bar foo-C

To see what commands will be run without running them use --dryrun:

 parallel --dryrun echo {} ::: A B C

Output (the order may be different):

 echo A
 echo B
 echo C

To print the command before running them use --verbose:

 parallel --verbose echo {} ::: A B C

Output (the order may be different):

 echo A
 echo B
 A
 echo C
 B
 C

GNU parallel will postpone the output until the command completes:

 parallel -j2 'printf "%s-start\n%s" {} {};
 sleep {};printf "%s\n" -middle;echo {}-end' ::: 4 2 1

Output:

 2-start
 2-middle
 2-end

GNU Parallel Tutorial

Page 20

 1-start
 1-middle
 1-end
 4-start
 4-middle
 4-end

To get the output immediately use --ungroup:

 parallel -j2 --ungroup 'printf "%s-start\n%s" {} {};
 sleep {};printf "%s\n" -middle;echo {}-end' ::: 4 2 1

Output:

 4-start
 42-start
 2-middle
 2-end
 1-start
 1-middle
 1-end
 -middle
 4-end

--ungroup is fast, but can cause half a line from one job to be mixed
with half a line of another job.
That has happened in the second line,
where the line '4-middle' is mixed with '2-start'.

To avoid this use --linebuffer:

 parallel -j2 --linebuffer 'printf "%s-start\n%s" {} {};
 sleep {};printf "%s\n" -middle;echo {}-end' ::: 4 2 1

Output:

 4-start
 2-start
 2-middle
 2-end
 1-start
 1-middle
 1-end
 4-middle
 4-end

To force the output in the same order as the arguments use --keep-order/-k:

 parallel -j2 -k 'printf "%s-start\n%s" {} {};
 sleep {};printf "%s\n" -middle;echo {}-end' ::: 4 2 1

Output:

 4-start
 4-middle
 4-end
 2-start
 2-middle
 2-end

GNU Parallel Tutorial

Page 21

 1-start
 1-middle
 1-end

Saving output into files
GNU parallel can save the output of each job into files:

 parallel --files echo ::: A B C

Output will be similar to this:

 /tmp/pAh6uWuQCg.par
 /tmp/opjhZCzAX4.par
 /tmp/W0AT_Rph2o.par

By default GNU parallel will cache the output in files in /tmp. This
can be changed by setting
$TMPDIR or --tmpdir:

 parallel --tmpdir /var/tmp --files echo ::: A B C

Output will be similar to this:

 /var/tmp/N_vk7phQRc.par
 /var/tmp/7zA4Ccf3wZ.par
 /var/tmp/LIuKgF_2LP.par

Or:

 TMPDIR=/var/tmp parallel --files echo ::: A B C

Output: Same as above.

The output files can be saved in a structured way using --results:

 parallel --results outdir echo ::: A B C

Output:

 A
 B
 C

These files were also generated containing the standard output
(stdout), standard error (stderr), and
the sequence number (seq):

 outdir/1/A/seq
 outdir/1/A/stderr
 outdir/1/A/stdout
 outdir/1/B/seq
 outdir/1/B/stderr
 outdir/1/B/stdout
 outdir/1/C/seq
 outdir/1/C/stderr
 outdir/1/C/stdout

--header : will take the first value as name and use that in the
directory structure. This is useful if you
are using multiple input
sources:

GNU Parallel Tutorial

Page 22

 parallel --header : --results outdir echo ::: f1 A B ::: f2 C D

Generated files:

 outdir/f1/A/f2/C/seq
 outdir/f1/A/f2/C/stderr
 outdir/f1/A/f2/C/stdout
 outdir/f1/A/f2/D/seq
 outdir/f1/A/f2/D/stderr
 outdir/f1/A/f2/D/stdout
 outdir/f1/B/f2/C/seq
 outdir/f1/B/f2/C/stderr
 outdir/f1/B/f2/C/stdout
 outdir/f1/B/f2/D/seq
 outdir/f1/B/f2/D/stderr
 outdir/f1/B/f2/D/stdout

The directories are named after the variables and their values.

Controlling the execution
Number of simultaneous jobs

The number of concurrent jobs is given with --jobs/-j:

 /usr/bin/time parallel -N0 -j64 sleep 1 :::: num128

With 64 jobs in parallel the 128 sleeps will take 2-8 seconds to run -
depending on how fast your
machine is.

By default --jobs is the same as the number of CPU cores. So this:

 /usr/bin/time parallel -N0 sleep 1 :::: num128

should take twice the time of running 2 jobs per CPU core:

 /usr/bin/time parallel -N0 --jobs 200% sleep 1 :::: num128

--jobs 0 will run as many jobs in parallel as possible:

 /usr/bin/time parallel -N0 --jobs 0 sleep 1 :::: num128

which should take 1-7 seconds depending on how fast your machine is.

--jobs can read from a file which is re-read when a job finishes:

 echo 50% > my_jobs
 /usr/bin/time parallel -N0 --jobs my_jobs sleep 1 :::: num128 &
 sleep 1
 echo 0 > my_jobs
 wait

The first second only 50% of the CPU cores will run a job. Then 0 is
put into my_jobs and then the
rest of the jobs will be started in
parallel.

Instead of basing the percentage on the number of CPU cores
GNU parallel can base it on the
number of CPUs:

 parallel --use-cpus-instead-of-cores -N0 sleep 1 :::: num8

GNU Parallel Tutorial

Page 23

Shuffle job order
If you have many jobs (e.g. by multiple combinations of input
sources), it can be handy to shuffle the
jobs, so you get different
values run. Use --shuf for that:

 parallel --shuf echo ::: 1 2 3 ::: a b c ::: A B C

Output:

 All combinations but different order for each run.

Interactivity
GNU parallel can ask the user if a command should be run using --interactive:

 parallel --interactive echo ::: 1 2 3

Output:

 echo 1 ?...y
 echo 2 ?...n
 1
 echo 3 ?...y
 3

GNU parallel can be used to put arguments on the command line for an
interactive command such
as emacs to edit one file at a time:

 parallel --tty emacs ::: 1 2 3

Or give multiple argument in one go to open multiple files:

 parallel -X --tty vi ::: 1 2 3

A terminal for every job
Using --tmux GNU parallel can start a terminal for every job run:

 seq 10 20 | parallel --tmux 'echo start {}; sleep {}; echo done {}'

This will tell you to run something similar to:

 tmux -S /tmp/tmsrPrO0 attach

Using normal tmux keystrokes (CTRL-b n or CTRL-b p) you can cycle
between windows of the
running jobs. When a job is finished it will
pause for 10 seconds before closing the window.

Timing
Some jobs do heavy I/O when they start. To avoid a thundering herd GNU parallel can delay starting
new jobs. --delay X will make
sure there is at least X seconds between each start:

 parallel --delay 2.5 echo Starting {}\;date ::: 1 2 3

Output:

 Starting 1
 Thu Aug 15 16:24:33 CEST 2013
 Starting 2
 Thu Aug 15 16:24:35 CEST 2013

GNU Parallel Tutorial

Page 24

 Starting 3
 Thu Aug 15 16:24:38 CEST 2013

If jobs taking more than a certain amount of time are known to fail,
they can be stopped with
--timeout. The accuracy of --timeout is
2 seconds:

 parallel --timeout 4.1 sleep {}\; echo {} ::: 2 4 6 8

Output:

 2
 4

GNU parallel can compute the median runtime for jobs and kill those
that take more than 200% of the
median runtime:

 parallel --timeout 200% sleep {}\; echo {} ::: 2.1 2.2 3 7 2.3

Output:

 2.1
 2.2
 3
 2.3

Progress information
Based on the runtime of completed jobs GNU parallel can estimate the
total runtime:

 parallel --eta sleep ::: 1 3 2 2 1 3 3 2 1

Output:

 Computers / CPU cores / Max jobs to run
 1:local / 2 / 2

 Computer:jobs running/jobs completed/%of started jobs/
 Average seconds to complete
 ETA: 2s 0left 1.11avg local:0/9/100%/1.1s

GNU parallel can give progress information with --progress:

 parallel --progress sleep ::: 1 3 2 2 1 3 3 2 1

Output:

 Computers / CPU cores / Max jobs to run
 1:local / 2 / 2

 Computer:jobs running/jobs completed/%of started jobs/
 Average seconds to complete
 local:0/9/100%/1.1s

A progress bar can be shown with --bar:

 parallel --bar sleep ::: 1 3 2 2 1 3 3 2 1

GNU Parallel Tutorial

Page 25

And a graphic bar can be shown with --bar and zenity:

 seq 1000 | parallel -j10 --bar '(echo -n {};sleep 0.1)' \
 2> >(perl -pe 'BEGIN{$/="\r";$|=1};s/\r/\n/g' |
 zenity --progress --auto-kill --auto-close)

A logfile of the jobs completed so far can be generated with --joblog:

 parallel --joblog /tmp/log exit ::: 1 2 3 0
 cat /tmp/log

Output:

 Seq Host Starttime Runtime Send Receive Exitval Signal Command
 1 : 1376577364.974 0.008 0 0 1 0 exit 1
 2 : 1376577364.982 0.013 0 0 2 0 exit 2
 3 : 1376577364.990 0.013 0 0 3 0 exit 3
 4 : 1376577365.003 0.003 0 0 0 0 exit 0

The log contains the job sequence, which host the job was run on, the
start time and run time, how
much data was transferred, the exit
value, the signal that killed the job, and finally the command being
run.

With a joblog GNU parallel can be stopped and later pickup where it
left off. It it important that the
input of the completed jobs is
unchanged.

 parallel --joblog /tmp/log exit ::: 1 2 3 0
 cat /tmp/log
 parallel --resume --joblog /tmp/log exit ::: 1 2 3 0 0 0
 cat /tmp/log

Output:

 Seq Host Starttime Runtime Send Receive Exitval Signal Command
 1 : 1376580069.544 0.008 0 0 1 0 exit 1
 2 : 1376580069.552 0.009 0 0 2 0 exit 2
 3 : 1376580069.560 0.012 0 0 3 0 exit 3
 4 : 1376580069.571 0.005 0 0 0 0 exit 0

 Seq Host Starttime Runtime Send Receive Exitval Signal Command
 1 : 1376580069.544 0.008 0 0 1 0 exit 1
 2 : 1376580069.552 0.009 0 0 2 0 exit 2
 3 : 1376580069.560 0.012 0 0 3 0 exit 3
 4 : 1376580069.571 0.005 0 0 0 0 exit 0
 5 : 1376580070.028 0.009 0 0 0 0 exit 0
 6 : 1376580070.038 0.007 0 0 0 0 exit 0

Note how the start time of the last 2 jobs is clearly different from the second run.

With --resume-failed GNU parallel will re-run the jobs that failed:

 parallel --resume-failed --joblog /tmp/log exit ::: 1 2 3 0 0 0
 cat /tmp/log

Output:

 Seq Host Starttime Runtime Send Receive Exitval Signal Command
 1 : 1376580069.544 0.008 0 0 1 0 exit 1

GNU Parallel Tutorial

Page 26

 2 : 1376580069.552 0.009 0 0 2 0 exit 2
 3 : 1376580069.560 0.012 0 0 3 0 exit 3
 4 : 1376580069.571 0.005 0 0 0 0 exit 0
 5 : 1376580070.028 0.009 0 0 0 0 exit 0
 6 : 1376580070.038 0.007 0 0 0 0 exit 0
 1 : 1376580154.433 0.010 0 0 1 0 exit 1
 2 : 1376580154.444 0.022 0 0 2 0 exit 2
 3 : 1376580154.466 0.005 0 0 3 0 exit 3

Note how seq 1 2 3 have been repeated because they had exit value
different from 0.

--retry-failed does almost the same as --resume-failed. Where --resume-failed reads the
commands from the command line (and
ignores the commands in the joblog), --retry-failed ignores
the
command line and reruns the commands mentioned in the joblog.

 parallel --retry-failed --joblog /tmp/log
 cat /tmp/log

Output:

 Seq Host Starttime Runtime Send Receive Exitval Signal Command
 1 : 1376580069.544 0.008 0 0 1 0 exit 1
 2 : 1376580069.552 0.009 0 0 2 0 exit 2
 3 : 1376580069.560 0.012 0 0 3 0 exit 3
 4 : 1376580069.571 0.005 0 0 0 0 exit 0
 5 : 1376580070.028 0.009 0 0 0 0 exit 0
 6 : 1376580070.038 0.007 0 0 0 0 exit 0
 1 : 1376580154.433 0.010 0 0 1 0 exit 1
 2 : 1376580154.444 0.022 0 0 2 0 exit 2
 3 : 1376580154.466 0.005 0 0 3 0 exit 3
 1 : 1376580164.633 0.010 0 0 1 0 exit 1
 2 : 1376580164.644 0.022 0 0 2 0 exit 2
 3 : 1376580164.666 0.005 0 0 3 0 exit 3

Termination
Unconditional termination

By default GNU parallel will wait for all jobs to finish before exiting.

If you send GNU parallel the TERM signal, GNU parallel will
stop spawning new jobs and wait for the
remaining jobs to finish. If
you send GNU parallel the TERM signal again, GNU parallel
will kill all
running jobs and exit.

Termination dependent on job status

For certain jobs there is no need to continue if one of the jobs fails
and has an exit code different from
0. GNU parallel will stop spawning new jobs
with --halt soon,fail=1:

 parallel -j2 --halt soon,fail=1 echo {}\; exit {} ::: 0 0 1 2 3

Output:

 0
 0
 1
 parallel: This job failed:
 echo 1; exit 1
 parallel: Starting no more jobs. Waiting for 1 jobs to finish.
 2

GNU Parallel Tutorial

Page 27

With --halt now,fail=1 the running jobs will be killed immediately:

 parallel -j2 --halt now,fail=1 echo {}\; exit {} ::: 0 0 1 2 3

Output:

 0
 0
 1
 parallel: This job failed:
 echo 1; exit 1

If --halt is given a percentage this percentage of the jobs must fail
before GNU parallel stops
spawning more jobs:

 parallel -j2 --halt soon,fail=20% echo {}\; exit {} \
 ::: 0 1 2 3 4 5 6 7 8 9

Output:

 0
 1
 parallel: This job failed:
 echo 1; exit 1
 2
 parallel: This job failed:
 echo 2; exit 2
 parallel: Starting no more jobs. Waiting for 1 jobs to finish.
 3
 parallel: This job failed:
 echo 3; exit 3

If you are looking for success instead of failures, you can use success. This will finish as soon as the
first job succeeds:

 parallel -j2 --halt now,success=1 echo {}\; exit {} ::: 1 2 3 0 4 5 6

Output:

 1
 2
 3
 0
 parallel: This job succeeded:
 echo 0; exit 0

GNU parallel can retry the command with --retries. This is useful if a
command fails for unknown
reasons now and then.

 parallel -k --retries 3 \
 'echo tried {} >>/tmp/runs; echo completed {}; exit {}' ::: 1 2 0
 cat /tmp/runs

Output:

 completed 1
 completed 2

GNU Parallel Tutorial

Page 28

 completed 0

 tried 1
 tried 2
 tried 1
 tried 2
 tried 1
 tried 2
 tried 0

Note how job 1 and 2 were tried 3 times, but 0 was not retried because it had exit code 0.

Termination signals (advanced)

Using --termseq you can control which signals are sent when killing
children. Normally children will
be killed by sending them SIGTERM,
waiting 200 ms, then another SIGTERM, waiting 100 ms, then
another SIGTERM, waiting 50 ms, then a SIGKILL, finally waiting 25 ms
before giving up. It looks like
this:

 show_signals() {
 perl -e 'for(keys %SIG) {
 $SIG{$_} = eval "sub { print \"Got $_\\n\"; }";
 }
 while(1){sleep 1}'
 }
 export -f show_signals
 echo | parallel --termseq TERM,200,TERM,100,TERM,50,KILL,25 \
 -u --timeout 1 show_signals

Output:

 Got TERM
 Got TERM
 Got TERM

Or just:

 echo | parallel -u --timeout 1 show_signals

Output: Same as above.

You can change this to SIGINT, SIGTERM, SIGKILL:

 echo | parallel --termseq INT,200,TERM,100,KILL,25 \
 -u --timeout 1 show_signals

Output:

 Got INT
 Got TERM

The SIGKILL does not show because it cannot be caught, and thus the
child dies.

Limiting the resources
To avoid overloading systems GNU parallel can look at the system load
before starting another job:

 parallel --load 100% echo load is less than {} job per cpu ::: 1

GNU Parallel Tutorial

Page 29

Output:

 [when then load is less than the number of cpu cores]
 load is less than 1 job per cpu

GNU parallel can also check if the system is swapping.

 parallel --noswap echo the system is not swapping ::: now

Output:

 [when then system is not swapping]
 the system is not swapping now

Some jobs need a lot of memory, and should only be started when there
is enough memory free.
Using --memfree GNU parallel can check if
there is enough memory free. Additionally, GNU parallel
will kill
off the youngest job if the memory free falls below 50% of the
size. The killed job will put back
on the queue and retried later.

 parallel --memfree 1G echo will run if more than 1 GB is ::: free

GNU parallel can run the jobs with a nice value. This will work both
locally and remotely.

 parallel --nice 17 echo this is being run with nice -n ::: 17

Output:

 this is being run with nice -n 17

Remote execution
GNU parallel can run jobs on remote servers. It uses ssh to
communicate with the remote machines.

Sshlogin
The most basic sshlogin is -S host:

 parallel -S $SERVER1 echo running on ::: $SERVER1

Output:

 running on [$SERVER1]

To use a different username prepend the server with username@:

 parallel -S username@$SERVER1 echo running on ::: username@$SERVER1

Output:

 running on [username@$SERVER1]

The special sshlogin : is the local machine:

 parallel -S : echo running on ::: the_local_machine

Output:

 running on the_local_machine

GNU Parallel Tutorial

Page 30

If ssh is not in $PATH it can be prepended to $SERVER1:

 parallel -S '/usr/bin/ssh '$SERVER1 echo custom ::: ssh

Output:

 custom ssh

The ssh command can also be given using --ssh:

 parallel --ssh /usr/bin/ssh -S $SERVER1 echo custom ::: ssh

or by setting $PARALLEL_SSH:

 export PARALLEL_SSH=/usr/bin/ssh
 parallel -S $SERVER1 echo custom ::: ssh

Several servers can be given using multiple -S:

 parallel -S $SERVER1 -S $SERVER2 echo ::: running on more hosts

Output (the order may be different):

 running
 on
 more
 hosts

Or they can be separated by ,:

 parallel -S $SERVER1,$SERVER2 echo ::: running on more hosts

Output: Same as above.

Or newline:

 # This gives a \n between $SERVER1 and $SERVER2
 SERVERS="`echo $SERVER1; echo $SERVER2`"
 parallel -S "$SERVERS" echo ::: running on more hosts

They can also be read from a file (replace user@ with the user on $SERVER2):

 echo $SERVER1 > nodefile
 # Force 4 cores, special ssh-command, username
 echo 4//usr/bin/ssh user@$SERVER2 >> nodefile
 parallel --sshloginfile nodefile echo ::: running on more hosts

Output: Same as above.

Every time a job finished, the --sshloginfile will be re-read, so
it is possible to both add and remove
hosts while running.

The special --sshloginfile .. reads from ~/.parallel/sshloginfile.

To force GNU parallel to treat a server having a given number of CPU
cores prepend the number of
core followed by / to the sshlogin:

 parallel -S 4/$SERVER1 echo force {} cpus on server ::: 4

GNU Parallel Tutorial

Page 31

Output:

 force 4 cpus on server

Servers can be put into groups by prepending @groupname to the
server and the group can then be
selected by appending @groupname to
the argument if using --hostgroup:

 parallel --hostgroup -S @grp1/$SERVER1 -S @grp2/$SERVER2 echo {} \
 ::: run_on_grp1@grp1 run_on_grp2@grp2

Output:

 run_on_grp1
 run_on_grp2

A host can be in multiple groups by separating the groups with +, and
you can force GNU parallel to
limit the groups on which the command
can be run with -S @groupname:

 parallel -S @grp1 -S @grp1+grp2/$SERVER1 -S @grp2/SERVER2 echo {} \
 ::: run_on_grp1 also_grp1

Output:

 run_on_grp1
 also_grp1

Transferring files
GNU parallel can transfer the files to be processed to the remote
host. It does that using rsync.

 echo This is input_file > input_file
 parallel -S $SERVER1 --transferfile {} cat ::: input_file

Output:

 This is input_file

If the files are processed into another file, the resulting file can be
transferred back:

 echo This is input_file > input_file
 parallel -S $SERVER1 --transferfile {} --return {}.out \
 cat {} ">"{}.out ::: input_file
 cat input_file.out

Output: Same as above.

To remove the input and output file on the remote server use --cleanup:

 echo This is input_file > input_file
 parallel -S $SERVER1 --transferfile {} --return {}.out --cleanup \
 cat {} ">"{}.out ::: input_file
 cat input_file.out

Output: Same as above.

There is a shorthand for --transferfile {} --return --cleanup called --trc:

 echo This is input_file > input_file
 parallel -S $SERVER1 --trc {}.out cat {} ">"{}.out ::: input_file

GNU Parallel Tutorial

Page 32

 cat input_file.out

Output: Same as above.

Some jobs need a common database for all jobs. GNU parallel can
transfer that using --basefile
which will transfer the file before the
first job:

 echo common data > common_file
 parallel --basefile common_file -S $SERVER1 \
 cat common_file\; echo {} ::: foo

Output:

 common data
 foo

To remove it from the remote host after the last job use --cleanup.

Working dir
The default working dir on the remote machines is the login dir. This
can be changed with --workdir
mydir.

Files transferred using --transferfile and --return will be relative
to mydir on remote computers, and
the command will be executed in
the dir mydir.

The special mydir value ... will create working dirs under ~/.parallel/tmp on the remote computers. If
--cleanup is given
these dirs will be removed.

The special mydir value . uses the current working dir. If the
current working dir is beneath your home
dir, the value . is
treated as the relative path to your home dir. This means that if your
home dir is
different on remote computers (e.g. if your login is
different) the relative path will still be relative to
your home dir.

 parallel -S $SERVER1 pwd ::: ""
 parallel --workdir . -S $SERVER1 pwd ::: ""
 parallel --workdir ... -S $SERVER1 pwd ::: ""

Output:

 [the login dir on $SERVER1]
 [current dir relative on $SERVER1]
 [a dir in ~/.parallel/tmp/...]

Avoid overloading sshd
If many jobs are started on the same server, sshd can be
overloaded. GNU parallel can insert a
delay between each job run on
the same server:

 parallel -S $SERVER1 --sshdelay 0.2 echo ::: 1 2 3

Output (the order may be different):

 1
 2
 3

sshd will be less overloaded if using --controlmaster, which will
multiplex ssh connections:

 parallel --controlmaster -S $SERVER1 echo ::: 1 2 3

GNU Parallel Tutorial

Page 33

Output: Same as above.

Ignore hosts that are down
In clusters with many hosts a few of them are often down. GNU parallel
can ignore those hosts. In
this case the host 173.194.32.46 is down:

 parallel --filter-hosts -S 173.194.32.46,$SERVER1 echo ::: bar

Output:

 bar

Running the same commands on all hosts
GNU parallel can run the same command on all the hosts:

 parallel --onall -S $SERVER1,$SERVER2 echo ::: foo bar

Output (the order may be different):

 foo
 bar
 foo
 bar

Often you will just want to run a single command on all hosts with out
arguments. --nonall is a no
argument --onall:

 parallel --nonall -S $SERVER1,$SERVER2 echo foo bar

Output:

 foo bar
 foo bar

When --tag is used with --nonall and --onall the --tagstring is the host:

 parallel --nonall --tag -S $SERVER1,$SERVER2 echo foo bar

Output (the order may be different):

 $SERVER1 foo bar
 $SERVER2 foo bar

--jobs sets the number of servers to log in to in parallel.

Transferring environment variables and functions
env_parallel is a shell function that transfers all aliases,
functions, variables, and arrays. You active it
by running:

 source `which env_parallel.bash`

Replace bash with the shell you use.

Now you can use env_parallel instead of parallel and still have
your environment:

 alias myecho=echo
 myvar="Joe's var is"

GNU Parallel Tutorial

Page 34

 env_parallel -S $SERVER1 'myecho $myvar' ::: green

Output:

 Joe's var is green

The disadvantage is that if your environment is huge env_parallel
will fail.

When env_parallel fails, you can still use --env to tell GNU parallel to transfer an environment
variable to the remote system.

 MYVAR='foo bar'
 export MYVAR
 parallel --env MYVAR -S $SERVER1 echo '$MYVAR' ::: baz

Output:

 foo bar baz

This works for functions, too, if your shell is Bash:

 # This only works in Bash
 my_func() {
 echo in my_func $1
 }
 export -f my_func
 parallel --env my_func -S $SERVER1 my_func ::: baz

Output:

 in my_func baz

GNU parallel can copy all user defined variables and functions to
the remote system. It just needs to
record which ones to ignore in ~/.parallel/ignored_vars. Do that by running this once:

 parallel --record-env
 cat ~/.parallel/ignored_vars

Output:

 [list of variables to ignore - including $PATH and $HOME]

Now all other variables and functions defined will be copied when
using --env _.

 # The function is only copied if using Bash
 my_func2() {
 echo in my_func2 $VAR $1
 }
 export -f my_func2
 VAR=foo
 export VAR

 parallel --env _ -S $SERVER1 'echo $VAR; my_func2' ::: bar

Output:

 foo

GNU Parallel Tutorial

Page 35

 in my_func2 foo bar

If you use env_parallel the variables, functions, and aliases do
not even need to be exported to be
copied:

 NOT='not exported var'
 alias myecho=echo
 not_ex() {
 myecho in not_exported_func $NOT $1
 }
 env_parallel --env _ -S $SERVER1 'echo $NOT; not_ex' ::: bar

Output:

 not exported var
 in not_exported_func not exported var bar

Showing what is actually run
--verbose will show the command that would be run on the local
machine.

When using --cat, --pipepart, or when a job is run on a remote
machine, the command is wrapped
with helper scripts. -vv shows all
of this.

 parallel -vv --pipepart --block 1M wc :::: num30000

Output:

 <num30000 perl -e 'while(@ARGV) { sysseek(STDIN,shift,0) || die;
 $left = shift; while($read = sysread(STDIN,$buf, ($left > 131072
 ? 131072 : $left))){ $left -= $read; syswrite(STDOUT,$buf); } }'
 0 0 0 168894 | (wc)
 30000 30000 168894

When the command gets more complex, the output is so hard to read,
that it is only useful for
debugging:

 my_func3() {
 echo in my_func $1 > $1.out
 }
 export -f my_func3
 parallel -vv --workdir ... --nice 17 --env _ --trc {}.out \
 -S $SERVER1 my_func3 {} ::: abc-file

Output will be similar to:

 (ssh server -- mkdir -p ./.parallel/tmp/aspire-1928520-1;rsync
 --protocol 30 -rlDzR -essh ./abc-file
 server:./.parallel/tmp/aspire-1928520-1);ssh server -- exec perl -e
 \''@GNU_Parallel=("use","IPC::Open3;","use","MIME::Base64");
 eval"@GNU_Parallel";my$eval=decode_base64(join"",@ARGV);eval$eval;'\'
 c3lzdGVtKCJta2RpciIsIi1wIiwiLS0iLCIucGFyYWxsZWwvdG1wL2FzcGlyZS0xOTI4N
 TsgY2hkaXIgIi5wYXJhbGxlbC90bXAvYXNwaXJlLTE5Mjg1MjAtMSIgfHxwcmludChTVE
 BhcmFsbGVsOiBDYW5ub3QgY2hkaXIgdG8gLnBhcmFsbGVsL3RtcC9hc3BpcmUtMTkyODU
 iKSAmJiBleGl0IDI1NTskRU5WeyJPTERQV0QifT0iL2hvbWUvdGFuZ2UvcHJpdmF0L3Bh
 IjskRU5WeyJQQVJBTExFTF9QSUQifT0iMTkyODUyMCI7JEVOVnsiUEFSQUxMRUxfU0VRI
 0BiYXNoX2Z1bmN0aW9ucz1xdyhteV9mdW5jMyk7IGlmKCRFTlZ7IlNIRUxMIn09fi9jc2
 ByaW50IFNUREVSUiAiQ1NIL1RDU0ggRE8gTk9UIFNVUFBPUlQgbmV3bGluZXMgSU4gVkF

GNU Parallel Tutorial

Page 36

 TL0ZVTkNUSU9OUy4gVW5zZXQgQGJhc2hfZnVuY3Rpb25zXG4iOyBleGVjICJmYWxzZSI7
 YXNoZnVuYyA9ICJteV9mdW5jMygpIHsgIGVjaG8gaW4gbXlfZnVuYyBcJDEgPiBcJDEub
 Xhwb3J0IC1mIG15X2Z1bmMzID4vZGV2L251bGw7IjtAQVJHVj0ibXlfZnVuYzMgYWJjLW
 RzaGVsbD0iJEVOVntTSEVMTH0iOyR0bXBkaXI9Ii90bXAiOyRuaWNlPTE3O2RveyRFTlZ
 MRUxfVE1QfT0kdG1wZGlyLiIvcGFyIi5qb2luIiIsbWFweygwLi45LCJhIi4uInoiLCJB
 KVtyYW5kKDYyKV19KDEuLjUpO313aGlsZSgtZSRFTlZ7UEFSQUxMRUxfVE1QfSk7JFNJ
 fT1zdWJ7JGRvbmU9MTt9OyRwaWQ9Zm9yazt1bmxlc3MoJHBpZCl7c2V0cGdycDtldmFse
 W9yaXR5KDAsMCwkbmljZSl9O2V4ZWMkc2hlbGwsIi1jIiwoJGJhc2hmdW5jLiJAQVJHVi
 JleGVjOiQhXG4iO31kb3skcz0kczwxPzAuMDAxKyRzKjEuMDM6JHM7c2VsZWN0KHVuZGV
 mLHVuZGVmLCRzKTt9dW50aWwoJGRvbmV8fGdldHBwaWQ9PTEpO2tpbGwoU0lHSFVQLC0k
 dW5sZXNzJGRvbmU7d2FpdDtleGl0KCQ/JjEyNz8xMjgrKCQ/JjEyNyk6MSskPz4+OCk=;
 _EXIT_status=$?; mkdir -p ./.; rsync --protocol 30 --rsync-path=cd\
 ./.parallel/tmp/aspire-1928520-1/./.\;\ rsync -rlDzR -essh
 server:./abc-file.out ./.;ssh server -- \(rm\ -f\
 ./.parallel/tmp/aspire-1928520-1/abc-file\;\ sh\ -c\ \'rmdir\
 ./.parallel/tmp/aspire-1928520-1/\ ./.parallel/tmp/\ ./.parallel/\
 2\>/dev/null\'\;rm\ -rf\ ./.parallel/tmp/aspire-1928520-1\;\);ssh
 server -- \(rm\ -f\ ./.parallel/tmp/aspire-1928520-1/abc-file.out\;\
 sh\ -c\ \'rmdir\ ./.parallel/tmp/aspire-1928520-1/\ ./.parallel/tmp/\
 ./.parallel/\ 2\>/dev/null\'\;rm\ -rf\
 ./.parallel/tmp/aspire-1928520-1\;\);ssh server -- rm -rf
 .parallel/tmp/aspire-1928520-1; exit $_EXIT_status;

Saving output to shell variables (advanced)
GNU parset will set shell variables to the output of GNU parallel. GNU parset has one important
limitation: It cannot be
part of a pipe. In particular this means it cannot read anything from
standard
input (stdin) or pipe output to another program.

To use GNU parset prepend command with destination variables:

 parset myvar1,myvar2 echo ::: a b
 echo $myvar1
 echo $myvar2

Output:

 a
 b

If you only give a single variable, it will be treated as an array:

 parset myarray seq {} 5 ::: 1 2 3
 echo "${myarray[1]}"

Output:

 2
 3
 4
 5

The commands to run can be an array:

 cmd=("echo '<<joe \"double space\" cartoon>>'" "pwd")
 parset data ::: "${cmd[@]}"
 echo "${data[0]}"
 echo "${data[1]}"

GNU Parallel Tutorial

Page 37

Output:

 <<joe "double space" cartoon>>
 [current dir]

Saving to an SQL base (advanced)
GNU parallel can save into an SQL base. Point GNU parallel to a
table and it will put the joblog there
together with the variables and
the output each in their own column.

CSV as SQL base
The simplest is to use a CSV file as the storage table:

 parallel --sqlandworker csv:///%2Ftmp/log.csv \
 seq ::: 10 ::: 12 13 14
 cat /tmp/log.csv

Note how '/' in the path must be written as %2F.

Output will be similar to:

 Seq,Host,Starttime,JobRuntime,Send,Receive,Exitval,_Signal,
 Command,V1,V2,Stdout,Stderr
 1,:,1458254498.254,0.069,0,9,0,0,"seq 10 12",10,12,"10
 11
 12
 ",
 2,:,1458254498.278,0.080,0,12,0,0,"seq 10 13",10,13,"10
 11
 12
 13
 ",
 3,:,1458254498.301,0.083,0,15,0,0,"seq 10 14",10,14,"10
 11
 12
 13
 14
 ",

A proper CSV reader (like LibreOffice or R's read.csv) will read this
format correctly - even with fields
containing newlines as above.

If the output is big you may want to put it into files using --results:

 parallel --results outdir --sqlandworker csv:///%2Ftmp/log2.csv \
 seq ::: 10 ::: 12 13 14
 cat /tmp/log2.csv

Output will be similar to:

 Seq,Host,Starttime,JobRuntime,Send,Receive,Exitval,_Signal,
 Command,V1,V2,Stdout,Stderr
 1,:,1458824738.287,0.029,0,9,0,0,
 "seq 10 12",10,12,outdir/1/10/2/12/stdout,outdir/1/10/2/12/stderr
 2,:,1458824738.298,0.025,0,12,0,0,
 "seq 10 13",10,13,outdir/1/10/2/13/stdout,outdir/1/10/2/13/stderr
 3,:,1458824738.309,0.026,0,15,0,0,
 "seq 10 14",10,14,outdir/1/10/2/14/stdout,outdir/1/10/2/14/stderr

GNU Parallel Tutorial

Page 38

DBURL as table
The CSV file is an example of a DBURL.

GNU parallel uses a DBURL to address the table. A DBURL has this format:

 vendor://[[user][:password]@][host][:port]/[database[/table]

Example:

 mysql://scott:tiger@my.example.com/mydatabase/mytable
 postgresql://scott:tiger@pg.example.com/mydatabase/mytable
 sqlite3:///%2Ftmp%2Fmydatabase/mytable
 csv:///%2Ftmp/log.csv

To refer to /tmp/mydatabase with sqlite or csv you need to
encode the / as %2F.

Run a job using sqlite on mytable in /tmp/mydatabase:

 DBURL=sqlite3:///%2Ftmp%2Fmydatabase
 DBURLTABLE=$DBURL/mytable
 parallel --sqlandworker $DBURLTABLE echo ::: foo bar ::: baz quuz

To see the result:

 sql $DBURL 'SELECT * FROM mytable ORDER BY Seq;'

Output will be similar to:

 Seq|Host|Starttime|JobRuntime|Send|Receive|Exitval|_Signal|
 Command|V1|V2|Stdout|Stderr
 1|:|1451619638.903|0.806||8|0|0|echo foo baz|foo|baz|foo baz
 |
 2|:|1451619639.265|1.54||9|0|0|echo foo quuz|foo|quuz|foo quuz
 |
 3|:|1451619640.378|1.43||8|0|0|echo bar baz|bar|baz|bar baz
 |
 4|:|1451619641.473|0.958||9|0|0|echo bar quuz|bar|quuz|bar quuz
 |

The first columns are well known from --joblog. V1 and V2 are
data from the input sources. Stdout
and Stderr are standard
output and standard error, respectively.

Using multiple workers
Using an SQL base as storage costs overhead in the order of 1 second
per job.

One of the situations where it makes sense is if you have multiple
workers.

You can then have a single master machine that submits jobs to the SQL
base (but does not do any
of the work):

 parallel --sqlmaster $DBURLTABLE echo ::: foo bar ::: baz quuz

On the worker machines you run exactly the same command except you
replace --sqlmaster with
--sqlworker.

 parallel --sqlworker $DBURLTABLE echo ::: foo bar ::: baz quuz

To run a master and a worker on the same machine use --sqlandworker
as shown earlier.

GNU Parallel Tutorial

Page 39

--pipe
The --pipe functionality puts GNU parallel in a different mode:
Instead of treating the data on stdin
(standard input) as arguments
for a command to run, the data will be sent to stdin (standard input)
of
the command.

The typical situation is:

 command_A | command_B | command_C

where command_B is slow, and you want to speed up command_B.

Chunk size
By default GNU parallel will start an instance of command_B, read a
chunk of 1 MB, and pass that to
the instance. Then start another
instance, read another chunk, and pass that to the second instance.

 cat num1000000 | parallel --pipe wc

Output (the order may be different):

 165668 165668 1048571
 149797 149797 1048579
 149796 149796 1048572
 149797 149797 1048579
 149797 149797 1048579
 149796 149796 1048572
 85349 85349 597444

The size of the chunk is not exactly 1 MB because GNU parallel only
passes full lines - never half a
line, thus the blocksize is only
1 MB on average. You can change the block size to 2 MB with --block:

 cat num1000000 | parallel --pipe --block 2M wc

Output (the order may be different):

 315465 315465 2097150
 299593 299593 2097151
 299593 299593 2097151
 85349 85349 597444

GNU parallel treats each line as a record. If the order of records
is unimportant (e.g. you need all
lines processed, but you do not care
which is processed first), then you can use --roundrobin.
Without --roundrobin GNU parallel will start a command per block; with --roundrobin only the
requested number of jobs will be started
(--jobs). The records will then be distributed between the
running
jobs:

 cat num1000000 | parallel --pipe -j4 --roundrobin wc

Output will be similar to:

 149797 149797 1048579
 299593 299593 2097151
 315465 315465 2097150
 235145 235145 1646016

One of the 4 instances got a single record, 2 instances got 2 full
records each, and one instance got 1
full and 1 partial record.

GNU Parallel Tutorial

Page 40

Records
GNU parallel sees the input as records. The default record is a single
line.

Using -N140000 GNU parallel will read 140000 records at a time:

 cat num1000000 | parallel --pipe -N140000 wc

Output (the order may be different):

 140000 140000 868895
 140000 140000 980000
 140000 140000 980000
 140000 140000 980000
 140000 140000 980000
 140000 140000 980000
 140000 140000 980000
 20000 20000 140001

Note how that the last job could not get the full 140000 lines, but
only 20000 lines.

If a record is 75 lines -L can be used:

 cat num1000000 | parallel --pipe -L75 wc

Output (the order may be different):

 165600 165600 1048095
 149850 149850 1048950
 149775 149775 1048425
 149775 149775 1048425
 149850 149850 1048950
 149775 149775 1048425
 85350 85350 597450
 25 25 176

Note how GNU parallel still reads a block of around 1 MB; but
instead of passing full lines to wc it
passes full 75 lines at a
time. This of course does not hold for the last job (which in this
case got 25
lines).

Fixed length records
Fixed length records can be processed by setting --recend '' and --block recordsize. A header of
size n can be processed with --header .{n}.

Here is how to process a file with a 4-byte header and a 3-byte record
size:

 cat fixedlen | parallel --pipe --header .{4} --block 3 --recend '' \
 'echo start; cat; echo'

Output:

 start
 HHHHAAA
 start
 HHHHCCC
 start
 HHHHBBB

It may be more efficient to increase --block to a multiplum of the
record size.

GNU Parallel Tutorial

Page 41

Record separators
GNU parallel uses separators to determine where two records split.

--recstart gives the string that starts a record; --recend gives the
string that ends a record. The
default is --recend '\n' (newline).

If both --recend and --recstart are given, then the record will only
split if the recend string is
immediately followed by the recstart
string.

Here the --recend is set to ', ':

 echo /foo, bar/, /baz, qux/, | \
 parallel -kN1 --recend ', ' --pipe echo JOB{#}\;cat\;echo END

Output:

 JOB1
 /foo, END
 JOB2
 bar/, END
 JOB3
 /baz, END
 JOB4
 qux/,
 END

Here the --recstart is set to /:

 echo /foo, bar/, /baz, qux/, | \
 parallel -kN1 --recstart / --pipe echo JOB{#}\;cat\;echo END

Output:

 JOB1
 /foo, barEND
 JOB2
 /, END
 JOB3
 /baz, quxEND
 JOB4
 /,
 END

Here both --recend and --recstart are set:

 echo /foo, bar/, /baz, qux/, | \
 parallel -kN1 --recend ', ' --recstart / --pipe \
 echo JOB{#}\;cat\;echo END

Output:

 JOB1
 /foo, bar/, END
 JOB2
 /baz, qux/,
 END

Note the difference between setting one string and setting both strings.

GNU Parallel Tutorial

Page 42

With --regexp the --recend and --recstart will be treated as
a regular expression:

 echo foo,bar,_baz,__qux, | \
 parallel -kN1 --regexp --recend ,_+ --pipe \
 echo JOB{#}\;cat\;echo END

Output:

 JOB1
 foo,bar,_END
 JOB2
 baz,__END
 JOB3
 qux,
 END

GNU parallel can remove the record separators with --remove-rec-sep/--rrs:

 echo foo,bar,_baz,__qux, | \
 parallel -kN1 --rrs --regexp --recend ,_+ --pipe \
 echo JOB{#}\;cat\;echo END

Output:

 JOB1
 foo,barEND
 JOB2
 bazEND
 JOB3
 qux,
 END

Header
If the input data has a header, the header can be repeated for each
job by matching the header with
--header. If headers start with % you can do this:

 cat num_%header | \
 parallel --header '(%.*\n)*' --pipe -N3 echo JOB{#}\;cat

Output (the order may be different):

 JOB1
 %head1
 %head2
 1
 2
 3
 JOB2
 %head1
 %head2
 4
 5
 6
 JOB3
 %head1
 %head2
 7

GNU Parallel Tutorial

Page 43

 8
 9
 JOB4
 %head1
 %head2
 10

If the header is 2 lines, --header 2 will work:

 cat num_%header | parallel --header 2 --pipe -N3 echo JOB{#}\;cat

Output: Same as above.

--pipepart
--pipe is not very efficient. It maxes out at around 500
MB/s. --pipepart can easily deliver 5 GB/s. But
there are a few
limitations. The input has to be a normal file (not a pipe) given by -a or :::: and -L/-l/-N
do not work. --recend and --recstart, however, do work, and records can often be split on
that alone.

 parallel --pipepart -a num1000000 --block 3m wc

Output (the order may be different):

 444443 444444 3000002
 428572 428572 3000004
 126985 126984 888890

Shebang
Input data and parallel command in the same file

GNU parallel is often called as this:

 cat input_file | parallel command

With --shebang the input_file and parallel can be combined into the same script.

UNIX shell scripts start with a shebang line like this:

 #!/bin/bash

GNU parallel can do that, too. With --shebang the arguments can be
listed in the file. The parallel
command is the first line of the
script:

 #!/usr/bin/parallel --shebang -r echo

 foo
 bar
 baz

Output (the order may be different):

 foo
 bar
 baz

Parallelizing existing scripts
GNU parallel is often called as this:

GNU Parallel Tutorial

Page 44

 cat input_file | parallel command
 parallel command ::: foo bar

If command is a script, parallel can be combined into a single
file so this will run the script in parallel:

 cat input_file | command
 command foo bar

This perl script perl_echo works like echo:

 #!/usr/bin/perl

 print "@ARGV\n"

It can be called as this:

 parallel perl_echo ::: foo bar

By changing the #!-line it can be run in parallel:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/perl

 print "@ARGV\n"

Thus this will work:

 perl_echo foo bar

Output (the order may be different):

 foo
 bar

This technique can be used for:

Perl:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/perl

 print "Arguments @ARGV\n";

Python:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/python

 import sys
 print 'Arguments', str(sys.argv)

Bash/sh/zsh/Korn shell:

 #!/usr/bin/parallel --shebang-wrap /bin/bash

 echo Arguments "$@"

csh:

 #!/usr/bin/parallel --shebang-wrap /bin/csh

GNU Parallel Tutorial

Page 45

 echo Arguments "$argv"

Tcl:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/tclsh

 puts "Arguments $argv"

R:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/Rscript
--vanilla --slave

 args <- commandArgs(trailingOnly = TRUE)
 print(paste("Arguments ",args))

GNUplot:

 #!/usr/bin/parallel --shebang-wrap ARG={} /usr/bin/gnuplot

 print "Arguments ", system('echo $ARG')

Ruby:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/ruby

 print "Arguments "
 puts ARGV

Octave:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/octave

 printf ("Arguments");
 arg_list = argv ();
 for i = 1:nargin
 printf (" %s", arg_list{i});
 endfor
 printf ("\n");

Common LISP:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/clisp

 (format t "~&~S~&" 'Arguments)
 (format t "~&~S~&" *args*)

PHP:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/php
 <?php
 echo "Arguments";
 foreach(array_slice($argv,1) as $v)
 {
 echo " $v";
 }
 echo "\n";
 ?>

GNU Parallel Tutorial

Page 46

Node.js:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/node

 var myArgs = process.argv.slice(2);
 console.log('Arguments ', myArgs);

LUA:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/lua

 io.write "Arguments"
 for a = 1, #arg do
 io.write(" ")
 io.write(arg[a])
 end
 print("")

C#:

 #!/usr/bin/parallel --shebang-wrap ARGV={} /usr/bin/csharp

 var argv = Environment.GetEnvironmentVariable("ARGV");
 print("Arguments "+argv);

Semaphore
GNU parallel can work as a counting semaphore. This is slower and less
efficient than its normal
mode.

A counting semaphore is like a row of toilets. People needing a toilet
can use any toilet, but if there
are more people than toilets, they
will have to wait for one of the toilets to become available.

An alias for parallel --semaphore is sem.

sem will follow a person to the toilets, wait until a toilet is
available, leave the person in the toilet and
exit.

sem --fg will follow a person to the toilets, wait until a toilet is
available, stay with the person in the
toilet and exit when the person
exits.

sem --wait will wait for all persons to leave the toilets.

sem does not have a queue discipline, so the next person is chosen
randomly.

-j sets the number of toilets.

Mutex
The default is to have only one toilet (this is called a mutex). The
program is started in the background
and sem exits immediately. Use --wait to wait for all sems to finish:

 sem 'sleep 1; echo The first finished' &&
 echo The first is now running in the background &&
 sem 'sleep 1; echo The second finished' &&
 echo The second is now running in the background
 sem --wait

Output:

 The first is now running in the background
 The first finished

GNU Parallel Tutorial

Page 47

 The second is now running in the background
 The second finished

The command can be run in the foreground with --fg, which will only
exit when the command
completes:

 sem --fg 'sleep 1; echo The first finished' &&
 echo The first finished running in the foreground &&
 sem --fg 'sleep 1; echo The second finished' &&
 echo The second finished running in the foreground
 sem --wait

The difference between this and just running the command, is that a
mutex is set, so if other sems
were running in the background only one
would run at a time.

To control which semaphore is used, use --semaphorename/--id. Run this in one terminal:

 sem --id my_id -u 'echo First started; sleep 10; echo First done'

and simultaneously this in another terminal:

 sem --id my_id -u 'echo Second started; sleep 10; echo Second done'

Note how the second will only be started when the first has finished.

Counting semaphore
A mutex is like having a single toilet: When it is in use everyone
else will have to wait. A counting
semaphore is like having multiple
toilets: Several people can use the toilets, but when they all are in

use, everyone else will have to wait.

sem can emulate a counting semaphore. Use --jobs to set the
number of toilets like this:

 sem --jobs 3 --id my_id -u 'echo Start 1; sleep 5; echo 1 done' &&
 sem --jobs 3 --id my_id -u 'echo Start 2; sleep 6; echo 2 done' &&
 sem --jobs 3 --id my_id -u 'echo Start 3; sleep 7; echo 3 done' &&
 sem --jobs 3 --id my_id -u 'echo Start 4; sleep 8; echo 4 done' &&
 sem --wait --id my_id

Output:

 Start 1
 Start 2
 Start 3
 1 done
 Start 4
 2 done
 3 done
 4 done

Timeout
With --semaphoretimeout you can force running the command anyway after
a period (positive
number) or give up (negative number):

 sem --id foo -u 'echo Slow started; sleep 5; echo Slow ended' &&
 sem --id foo --semaphoretimeout 1 'echo Forced running after 1 sec' &&
 sem --id foo --semaphoretimeout -2 'echo Give up after 2 secs'
 sem --id foo --wait

GNU Parallel Tutorial

Page 48

Output:

 Slow started
 parallel: Warning: Semaphore timed out. Stealing the semaphore.
 Forced running after 1 sec
 parallel: Warning: Semaphore timed out. Exiting.
 Slow ended

Note how the 'Give up' was not run.

Informational
GNU parallel has some options to give short information about the
configuration.

--help will print a summary of the most important options:

 parallel --help

Output:

 Usage:

 parallel [options] [command [arguments]] < list_of_arguments
 parallel [options] [command [arguments]] (::: arguments|::::
argfile(s))...
 cat ... | parallel --pipe [options] [command [arguments]]

 -j n Run n jobs in parallel
 -k Keep same order
 -X Multiple arguments with context replace
 --colsep regexp Split input on regexp for positional replacements
 {} {.} {/} {/.} {#} {%} {= perl code =} Replacement strings
 {3} {3.} {3/} {3/.} {=3 perl code =} Positional replacement strings
 With --plus: {} = {+/}/{/} = {.}.{+.} = {+/}/{/.}.{+.} = {..}.{+..} =
 {+/}/{/..}.{+..} = {...}.{+...} = {+/}/{/...}.{+...}

 -S sshlogin Example: foo@server.example.com
 --slf .. Use ~/.parallel/sshloginfile as the list of sshlogins
 --trc {}.bar Shorthand for --transfer --return {}.bar --cleanup
 --onall Run the given command with argument on all sshlogins
 --nonall Run the given command with no arguments on all sshlogins

 --pipe Split stdin (standard input) to multiple jobs.
 --recend str Record end separator for --pipe.
 --recstart str Record start separator for --pipe.

 See 'man parallel' for details

 Academic tradition requires you to cite works you base your article on.
 When using programs that use GNU Parallel to process data for publication
 please cite:

 O. Tange (2011): GNU Parallel - The Command-Line Power Tool,
 ;login: The USENIX Magazine, February 2011:42-47.

 This helps funding further development; AND IT WON'T COST YOU A CENT.

GNU Parallel Tutorial

Page 49

 If you pay 10000 EUR you should feel free to use GNU Parallel without
citing.

When asking for help, always report the full output of this:

 parallel --version

Output:

 GNU parallel 20210122
 Copyright (C) 2007-2022 Ole Tange, http://ole.tange.dk and Free Software
 Foundation, Inc.
 License GPLv3+: GNU GPL version 3 or later
<https://gnu.org/licenses/gpl.html>
 This is free software: you are free to change and redistribute it.
 GNU parallel comes with no warranty.

 Web site: https://www.gnu.org/software/parallel

 When using programs that use GNU Parallel to process data for publication
 please cite as described in 'parallel --citation'.

In scripts --minversion can be used to ensure the user has at least
this version:

 parallel --minversion 20130722 && \
 echo Your version is at least 20130722.

Output:

 20160322
 Your version is at least 20130722.

If you are using GNU parallel for research the BibTeX citation can be
generated using --citation:

 parallel --citation

Output:

 Academic tradition requires you to cite works you base your article on.
 When using programs that use GNU Parallel to process data for publication
 please cite:

 @article{Tange2011a,
 title = {GNU Parallel - The Command-Line Power Tool},
 author = {O. Tange},
 address = {Frederiksberg, Denmark},
 journal = {;login: The USENIX Magazine},
 month = {Feb},
 number = {1},
 volume = {36},
 url = {https://www.gnu.org/s/parallel},
 year = {2011},
 pages = {42-47},
 doi = {10.5281/zenodo.16303}
 }

GNU Parallel Tutorial

Page 50

 (Feel free to use \nocite{Tange2011a})

 This helps funding further development; AND IT WON'T COST YOU A CENT.
 If you pay 10000 EUR you should feel free to use GNU Parallel without
citing.

 If you send a copy of your published article to tange@gnu.org, it will be
 mentioned in the release notes of next version of GNU Parallel.

With --max-line-length-allowed GNU parallel will report the maximal
size of the command line:

 parallel --max-line-length-allowed

Output (may vary on different systems):

 131071

--number-of-cpus and --number-of-cores run system specific code to
determine the number of
CPUs and CPU cores on the system. On
unsupported platforms they will return 1:

 parallel --number-of-cpus
 parallel --number-of-cores

Output (may vary on different systems):

 4
 64

Profiles
The defaults for GNU parallel can be changed systemwide by putting the
command line options in
/etc/parallel/config. They can be changed for
a user by putting them in ~/.parallel/config.

Profiles work the same way, but have to be referred to with --profile:

 echo '--nice 17' > ~/.parallel/nicetimeout
 echo '--timeout 300%' >> ~/.parallel/nicetimeout
 parallel --profile nicetimeout echo ::: A B C

Output:

 A
 B
 C

Profiles can be combined:

 echo '-vv --dry-run' > ~/.parallel/dryverbose
 parallel --profile dryverbose --profile nicetimeout echo ::: A B C

Output:

 echo A
 echo B
 echo C

GNU Parallel Tutorial

Page 51

Spread the word
I hope you have learned something from this tutorial.

If you like GNU parallel:

(Re-)walk through the tutorial if you have not done so in the past year

(https://www.gnu.org/software/parallel/parallel_tutorial.html)

Give a demo at your local user group/your team/your colleagues

Post the intro videos and the tutorial on Reddit, Mastodon, Diaspora*,
forums, blogs, Identi.ca,
Google+, Twitter, Facebook, Linkedin, and
mailing lists

Request or write a review for your favourite blog or magazine
(especially if you do something cool
with GNU parallel)

Invite me for your next conference

If you use GNU parallel for research:

Please cite GNU parallel in you publications (use --citation)

If GNU parallel saves you money:

(Have your company) donate to FSF or become a member
https://my.fsf.org/donate/

(C) 2013-2022 Ole Tange, GFDLv1.3+ (See
LICENSES/GFDL-1.3-or-later.txt)

