
GNU Parallel Book

Page 1

Learn GNU Parallel in 5 minutes
You just need to run commands in parallel. You do not care about fine
 tuning.

To get going please run this to make some example files:

  # If your system does not have 'seq', we will use 'jot' instead
  if ! seq 1 2>/dev/null; then alias seq=jot; fi

  seq 5 | parallel 'seq {} > example.{}'

Input sources
GNU parallel reads values from input sources. One input source is
 the command line. The values are
put after ::: :

  parallel echo ::: 1 2 3 4 5

This makes it easy to run the same program on some files:

  parallel wc ::: example.*

If you give multiple :::s, GNU parallel will make all combinations:

  parallel wc ::: -l -c ::: example.*

GNU parallel can also read the values from stdin (standard input):

  seq 5 | parallel echo

Building the command line
The command line is put before the :::. It can contain contain a
 command and options for the 
command:

  parallel wc -l ::: example.*

The command can contain multiple programs. Just remember to quote
 characters that are interpreted 
by the shell (such as ;):

  parallel echo counting lines';' wc -l ::: example.*

The value will normally be appended to the command, but can be placed
 anywhere by using the 
replacement string {}:

  parallel echo counting {}';' wc -l {} ::: example.*

When using multiple input sources you use the positional replacement
 strings:

  parallel echo count {1} in {2}';' wc {1} {2} ::: -l -c ::: example.*

Controlling the output
The output will be printed as soon as the command completes. This
 means the output may come in a 
different order than the input:

  parallel sleep {}';' echo {} done ::: 5 4 3 2 1

You can force GNU parallel to print in the order of the values with --keep-order/-k. This will still run 
the commands in parallel.
 The output of the later jobs will be delayed, until the earlier jobs
 are printed:



GNU Parallel Book

Page 2

  parallel -k sleep {}';' echo {} done ::: 5 4 3 2 1

Controlling the execution
If your jobs are compute intensive, you will most likely run one job
 for each core in the system. This is 
the default for GNU parallel.

But sometimes you want more jobs running. You control the number of
 job slots with -j. Give -j the 
number of jobs to run in
 parallel:

  parallel -j50 \
    wget http://ftpmirror.gnu.org/parallel/parallel-{1}{2}22.tar.bz2 \
    ::: 2012 2013 2014 2015 2016 \
    ::: 01 02 03 04 05 06 07 08 09 10 11 12

Pipe mode
GNU parallel can also pass blocks of data to commands on stdin
 (standard input):

  seq 1000000 | parallel --pipe wc

This can be used to process big text files. By default GNU parallel
 splits on \n (newline) and passes a
block of around 1 MB to each job.

That's it
You have now learned the basic use of GNU parallel. This will
 probably cover most cases of your use
of GNU parallel.

The rest of this document is simply to go into more details on each of
 the sections and cover special 
use cases.

Learn GNU Parallel in an hour
In this part we will dive deeper into what you learned in the first 5 minutes.

To get going please run this to make some example files:

  seq 6 > seq6
  seq 6 -1 1 > seq-6

Input sources
On top of the command line, input sources can also be stdin (standard
 input or '-'), files and fifos and 
they can be mixed. Files are given
 after -a or ::::. So these all do the same:

  parallel echo Dice1={1} Dice2={2} ::: 1 2 3 4 5 6 ::: 6 5 4 3 2 1
  parallel echo Dice1={1} Dice2={2} ::: <(seq 6) ::: <(seq 6 -1 1)
  parallel echo Dice1={1} Dice2={2} :::: seq6 seq-6
  parallel -a seq6 -a seq-6 echo Dice1={1} Dice2={2}
  parallel -a seq6 echo Dice1={1} Dice2={2} :::: seq-6
  parallel echo Dice1={1} Dice2={2} ::: 1 2 3 4 5 6 :::: seq-6
  cat seq-6 | parallel echo Dice1={1} Dice2={2} :::: seq-6 -

If stdin (standard input) is the only input source, you do not need the '-':

  cat seq6 | parallel echo Dice1={1}

You can link multiple input sources with :::+ and ::::+:

  parallel echo {1}={2} ::: I II III IV V VI :::+ 1 2 3 4 5 6
  parallel echo {1}={2} ::: I II III IV V VI ::::+ seq6



GNU Parallel Book

Page 3

Building the command line
The command

The command can be a script, a binary or a Bash function if the
 function is exported using export -f:

  # Works only in Bash
  my_func() {
    echo in my_func "$1"
  }
  export -f my_func
  parallel my_func ::: 1 2 3

The replacement strings

GNU parallel has some replacement strings to make it easier

Controlling the output
Controlling the execution
Remote execution

Pipe mode
 =head2 That's it
Advanced usage

env_parallel, parset, env_parset


